Please provide the following information, and submit to the NOAA DM Plan Repository. # Reference to Master DM Plan (if applicable) As stated in Section IV, Requirement 1.3, DM Plans may be hierarchical. If this DM Plan inherits provisions from a higher-level DM Plan already submitted to the Repository, then this more-specific Plan only needs to provide information that differs from what was provided in the Master DM Plan. URL of higher-level DM Plan (if any) as submitted to DM Plan Repository: # 1. General Description of Data to be Managed # **1.1. Name of the Data, data collection Project, or data-producing Program:**San Diego CA 2014 Lidar QL2 # 1.2. Summary description of the data: Geographic Extent: San Diego, California, covering approximately 1,505 square miles. Dataset Description: San Diego, California 2014 LiDAR project called for the Planning, Acquisition, processing and derivative products of LIDAR data to be collected at a nominal pulse spacing (NPS) of 0.7 meter. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LIDAR Specification, Version 1. LiDAR data was delivered in RAW flight line swath format, processed to create Classified LAS 1.2 Files formatted to 1564 individual 5000 ft x 5000 ft tiles, and corresponding Intensity Images and Bare Earth DEMs tiled to the same 5000 ft x 5000 ft schema, and Breaklines in Esri geodatabase format. Ground Conditions: LiDAR was collected in late 2014 and early 2015, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications, Photo Science established a total of 88 QA calibration control points and 80 Land Cover control points that were used to calibrate the LIDAR to known ground locations established throughout the San Diego, California project area. # **1.3.** Is this a one-time data collection, or an ongoing series of measurements? One-time data collection # 1.4. Actual or planned temporal coverage of the data: 2014-10-27 to 2015-02-17 #### 1.5. Actual or planned geographic coverage of the data: W: -117.59965195819, E: -116.80835911868, N: 33.50624023206, S: 32.51964774248 ## 1.6. Type(s) of data: (e.g., digital numeric data, imagery, photographs, video, audio, database, tabular data, etc.) Lidar point cloud ### 1.7. Data collection method(s): (e.g., satellite, airplane, unmanned aerial system, radar, weather station, moored buoy, research vessel, autonomous underwater vehicle, animal tagging, manual surveys, enforcement activities, numerical model, etc.) ## 1.8. If data are from a NOAA Observing System of Record, indicate name of system: # 1.8.1. If data are from another observing system, please specify: ## 2. Point of Contact for this Data Management Plan (author or maintainer) #### 2.1. Name: NOAA Office for Coastal Management (NOAA/OCM) #### 2.2. Title: Metadata Contact ### 2.3. Affiliation or facility: NOAA Office for Coastal Management (NOAA/OCM) #### 2.4. E-mail address: coastal.info@noaa.gov #### 2.5. Phone number: (843) 740-1202 #### 3. Responsible Party for Data Management Program Managers, or their designee, shall be responsible for assuring the proper management of the data produced by their Program. Please indicate the responsible party below. #### 3.1. Name: #### 3.2. Title: Data Steward #### 4. Resources Programs must identify resources within their own budget for managing the data they produce. - 4.1. Have resources for management of these data been identified? - 4.2. Approximate percentage of the budget for these data devoted to data management (specify percentage or "unknown"): # 5. Data Lineage and Quality NOAA has issued Information Quality Guidelines for ensuring and maximizing the quality, objectivity, utility, and integrity of information which it disseminates. # 5.1. Processing workflow of the data from collection or acquisition to making it publicly accessible (describe or provide URL of description): **Process Steps:** - 2015-01-01 00:00:00 Lidar Pre-Processing: Airborne GPS and IMU data were merged to develop a Single Best Estimate (SBET) of the lidar system trajectory for each lift. Lidar ranging data were initially calibrated using previous best parameters for this instrument and aircraft. Relative calibration was evaluated using advanced plane-matching analysis and parameter corrections derived. This was repeated iteratively until residual errors between overlapping swaths, across all project lifts, was reduced to acceptable levels. Data were then block adjusted to match surveyed calibration control. Raw data FVA were checked using independently surveyed checkpoints. Swath overage points were identified and tagged within each swath file. The results of the final calibration, FVA and horizontal accuracy assessments, and the "raw" swaths were forwarded to the client to obtain a Notice To Proceed on classification and derivative product generation. - 2015-01-01 00:00:00 Lidar Post-Processing: The calibrated and controlled lidar swaths were processed using automatic point classification routines in proprietary software. These routines operate against the entire collection (all swaths, all lifts), eliminating character differences between files. Data were then distributed as virtual tiles to experienced lidar analysts for localized automatic classification, manual editing, and peer-based QC checks. Supervisory QC monitoring of work in progress and completed editing ensured consistency of classification character and adherence to project requirements across the entire project area. All classification tags are stored in the original swath files. After completion of classification and final QC approval, the FVA, SVAs, and CVA for the project are calculated. Sample areas for each land cover type present in the project area were extracted and forwarded to the client, along with the results of the accuracy tests. Upon acceptance, the complete classified lidar swath files were delivered to the client. - 2015-01-01 00:00:00 Classified LAS Processing: The bare earth surface is then manually reviewed to ensure correct classification on the Class 2 (Ground) points. After the bare-earth surface is finalized, it is then used to generate all hydrobreaklines through heads-up digitization. All ground (ASPRS Class 2) LiDAR data inside of the Lake Pond and Double Line Drain hydro flattening breaklines were then classified to water (ASPRS Class 9) using TerraScan macro functionality. A buffer of 3 feet was also used around each hydro-flattened feature to classify these ground (ASPRS Class 2) points to Ignored ground (ASPRS Class 10). All Lake Pond Island and Double Line Drain Island features were checked to ensure that the ground (ASPRS Class 2) points were reclassified to the correct classification after the automated classification was completed. All overlap data was processed through automated functionality provided by TerraScan to classify the overlapping flight line data to approved classes by USGS. The overlap data was classified to Class 21 (Overlap Default), Class 22 (Overlap Ground), and Class 25 (Overlap Water). These classes were created through automated processes only and were not verified for classification accuracy. Due to software limitations within TerraScan, these classes were used to trip the withheld bit within various software packages. These processes were reviewed and accepted by USGS through numerous conference calls and pilot study areas. All data was manually reviewed and any remaining artifacts removed using functionality provided by TerraScan and TerraModeler. Global Mapper us used as a final check of the bare earth dataset. GeoCue was then used to create the deliverable industry-standard LAS files for both the All Point Cloud Data and the Bare Earth. Photo Science proprietary software was used to perform final statistical analysis of the classes in the LAS files, on a per tile level to verify final classification metrics and full LAS header information. - 2015-01-01 00:00:00 Hydro Flattening Breakline Processing: Class 2 LiDAR was used to create a bare earth surface model. The surface model was then used to heads-up digitize 2D breaklines of inland streams and rivers with a 100 foot nominal width and Inland Ponds and Lakes of 2 acres or greater surface area. Elevation values were assigned to all Inland Ponds and Lakes, Inland Pond and Lake Islands, Inland Stream and River Islands, using TerraModeler functionality. Elevation values were assigned to all Inland streams and rivers using Photo Science All ground (ASPRS Class 2) LiDAR data inside of the proprietary software. collected inland breaklines were then classified to water (ASPRS Class 9) using TerraScan macro functionality. A buffer of 3 feet was also used around each hydroflattened feature. These points were moved from ground (ASPRS Class 2) to Ignored Ground (ASPRS Class 10). The breakline files were then translated to ESRI File-Geodatabase format using ESRI conversion tools. - 2018-09-20 00:00:00 NOAA OCM downloaded the data from USGS via ftp in LAZ format with state plane projection (FIPS 0406, NAD83(2011)) and vertical feet NAVD88. For ingestion into the Digital Coast Data Access Viewer, the data were reprojected to geographic coordinates. The vertical data were converted to meters and reduced to ellipsoid heights by removing the geoid12a model. - 5.1.1. If data at different stages of the workflow, or products derived from these data, are subject to a separate data management plan, provide reference to other plan: - 5.2. Quality control procedures employed (describe or provide URL of description): #### 6. Data Documentation The EDMC Data Documentation Procedural Directive requires that NOAA data be well documented, specifies the use of ISO 19115 and related standards for documentation of new data, and provides links to resources and tools for metadata creation and validation. # 6.1. Does metadata comply with EDMC Data Documentation directive? Nο # 6.1.1. If metadata are non-existent or non-compliant, please explain: Missing/invalid information: - 1.7. Data collection method(s) - 3.1. Responsible Party for Data Management - 4.1. Have resources for management of these data been identified? - 4.2. Approximate percentage of the budget for these data devoted to data management - 5.2. Quality control procedures employed - 7.1. Do these data comply with the Data Access directive? - 7.1.1. If data are not available or has limitations, has a Waiver been filed? - 7.1.2. If there are limitations to data access, describe how data are protected - 7.4. Approximate delay between data collection and dissemination - 8.1. Actual or planned long-term data archive location - 8.3. Approximate delay between data collection and submission to an archive facility - 8.4. How will the data be protected from accidental or malicious modification or deletion prior to receipt by the archive? # 6.2. Name of organization or facility providing metadata hosting: NMFS Office of Science and Technology ## 6.2.1. If service is needed for metadata hosting, please indicate: #### 6.3. URL of metadata folder or data catalog, if known: https://www.fisheries.noaa.gov/inport/item/53857 ## 6.4. Process for producing and maintaining metadata (describe or provide URL of description): Metadata produced and maintained in accordance with the NOAA Data Documentation Procedural Directive: https://nosc.noaa.gov/EDMC/DAARWG/docs/EDMC_PD-Data_Documentation_v1.pdf #### 7. Data Access NAO 212-15 states that access to environmental data may only be restricted when distribution is explicitly limited by law, regulation, policy (such as those applicable to personally identifiable information or protected critical infrastructure information or proprietary trade information) or by security requirements. The EDMC Data Access Procedural Directive contains specific guidance, recommends the use of open-standard, interoperable, non-proprietary web services, provides information about resources and tools to enable data access, and includes a Waiver to be submitted to justify any approach other than full, unrestricted public access. #### 7.1. Do these data comply with the Data Access directive? # 7.1.1. If the data are not to be made available to the public at all, or with limitations, has a Waiver (Appendix A of Data Access directive) been filed? # 7.1.2. If there are limitations to public data access, describe how data are protected from unauthorized access or disclosure: # 7.2. Name of organization of facility providing data access: NOAA Office for Coastal Management (NOAA/OCM) # 7.2.1. If data hosting service is needed, please indicate: #### 7.2.2. URL of data access service, if known: https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=8611 https://coast.noaa.gov/htdata/lidar2_z/geoid18/data/8611 #### 7.3. Data access methods or services offered: Data is available online for custom downloads #### 7.4. Approximate delay between data collection and dissemination: # 7.4.1. If delay is longer than latency of automated processing, indicate under what authority data access is delayed: ## 8. Data Preservation and Protection The NOAA Procedure for Scientific Records Appraisal and Archive Approval describes how to identify, appraise and decide what scientific records are to be preserved in a NOAA archive. ## 8.1. Actual or planned long-term data archive location: (Specify NCEI-MD, NCEI-CO, NCEI-NC, NCEI-MS, World Data Center (WDC) facility, Other, To Be Determined, Unable to Archive, or No Archiving Intended) #### 8.1.1. If World Data Center or Other, specify: #### 8.1.2. If To Be Determined, Unable to Archive or No Archiving Intended, explain: # 8.2. Data storage facility prior to being sent to an archive facility (if any): Office for Coastal Management - Charleston, SC #### 8.3. Approximate delay between data collection and submission to an archive facility: # 8.4. How will the data be protected from accidental or malicious modification or deletion prior to receipt by the archive? Discuss data back-up, disaster recovery/contingency planning, and off-site data storage relevant to the data collection # 9. Additional Line Office or Staff Office Questions Line and Staff Offices may extend this template by inserting additional questions in this section.